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An analysis has been carried out to determine the heat transfer characteristics
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for turbulent flow of a heat generating fluid in a circular tube with wall heat

cc

transfer. The internal heat generation is uniform over the tube cross section, but
may vary longltudinally in an arbitrary manner. The wall heat transfer may also
vary in an arbitrary way in the longitudinal direction. The analysis applies along

the entire length of the tube, that is, in thermal entrance as well as fully-

CP=1

developed regions. The fluid is assumed to have a fully developed turbulent veloc- .
ity profile throughout the length of the pipe. Numerical results are presented

for fluids with Prandtl numbers ranging from 0.7 to 100 for Reynolds numbers from
50,000 to 500,000. The extension of the results to include radial heat source

varlations is indicated.

NOMENCLATURE
Cp specific heat at constant pressure
Dy coefficients in series expansion of temperature for case of internal heat
sources; D, coefficients when heat source is a function of radial position
d tube diameter, Zrg,
En coefficients 1n series expansion of wall temperature for case of internal:
heat sources, ann(rg)
Fu coefficients in series expansion of wall temperature for case of wall heat

transfer
G(r+) fully developed temperature distribution for case of uniform wall heat fiux
H(r+) fully developed temperature distribution for case of uniform internal heat
generation

h local heat transfer coefficient
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7 \ Lk thermal ;eonductivity
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fully developed temperature distribution for case of heat sources dependent
on r

local Nusselt number, hd/k

Prandtl number, v/a

rate of internal heat generation per unit volume

local heat transfer rate per unit area at tube wall

radial coordinate measured from tube centerline; ry, tube radius

dimensionless radial coordinate, rw/?g7E/%; rg dimensionless tube radius,
I'o'\/?o75/(D

Reynolds number, ud/v

absolute temperature; T, absolute wall temperature; Ty, absolute bulk fluid
temperature

temperature; t,, temperature of fluid entering tube (2 constant); t*, differ-
ence temperature defined in equation (5); th, bulk fluid temperature; ty,
tube wall temperature

fluid velocity in the x-direction; H, mean fluid velocity

dimensionless velocity in x-direction, %/g/;;75

axial coordinate measuring distance from tube entrance

dimensionless axial coordinate, x/d

dummy integration variable

radial coordinate measuring distance inward from tube wall, r, - T

dimensionless ccordinate, yq/?;7€/%

molecular diffusivity for heat, k/pcp

eigenvalues of equation (17a)

dimensionless total thermal diffusivity, (a + ep)/v

eddy diffusivities for heat and momentum

kinematic viscosity

fluid density
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To shear stress at tube wall

W eigenfunctions of equation (17a)

¥ function of x given by equation (16)

Subscripts:

fd denotes fully developed heat transfer condition

Q denotes situation where Q@ # O and gq= 0

q denotes situation where ¢ % 0 and @ =0
INTRCDUCTION

Flowing fluids with internal heat generation are found in many sectors of modern
technology. Such flows may occur, for example, in fluid-fueled nuclear reactors and
chemical process equipment. The basic flow passage in many of these systems is the
circular tube, and it is this configuration which is selected for analysis here.

Specifically, we are concerned with turbulent pipe flows in which the internal
heat'generation is uniform across the section, but which may vary in an arbitrary
manner along the length. Furthermore, the heat transfer at the tube wall is also per-
mitted to take on an arbitrary longitudinal variation. An example of a situation
where such variations may occur is in a nuclear reactor core in which the neutron flux
varies with position.

The findings of the analysis can be used to calculate the heat transfer charac-
terlstics over the entire length of the passage, that is, in the thermal entrance as
well as far downstream. Numerical results are provided over the Reynolds number range
from 50,000 to 500,00C for Prandtl numbers varylng from 0.7 to 100.

Previous analyses (1,2,3) of turbulent pipe flows with internal heat generation
have been confined to the condition of fully developed heat transfer, and hence, the
results pertain to the portion of pipe beyond the thermal entrance region. Also,
these investigations were carried out under the restrictions that the internal heat

generation and wall heat transfer are both longitudinally uniform. Laminar pipe flows



-4 -
have, however, lent themselves more readily to analysis. Results applicable over the
entire pipe length have been given (4) for the general situation where the internal
heat generation takes on arbitrary longitudinal and radial variations, while the wall
heat transfer varies arbitrarily along the length. Of course, turbulent flows are of
greater importance as they are almost always encountered in practice.
GENERAL ANALYTICAL. CONSIDERATIONS

The system to be analyzed is pictured schematically on figure 1. Our attention
is directed to the portion of the tube to the right of x = O where the fluid simul-
taneously experiences an internal heat generation Q(x) and a wall heat transfer
q(x). The functions Q and q are permitted arbitrary variations with =x. The
fluid, moving from left to right, possesses a fully developed turbulent velocity pro-
file which is unchanging with length. The temperature across the entrance sectilon,
x = 0, 1s taken to be uniform at the value t5. It is desired to determine the heat
transfer characteristics of the fluid at all positions along the tube.

The starting point of our study is the equation expressing conservation of energy
for axially symmetric turbulent flow in a pipe. For fully developed hydrodynamic con-

ditions, this may be written as

u%:%%[x’(a+eh) %%]+% (1)
where o and €, represent respectively the molecular and eddy diffusivities for
heat. To obtain the energy equation in this form, it has been assumed that the fluid
properties are constant, and that viscous dissipation and axial heat diffusion are
both negligible compared to heat diffusion in the radial direction.

Since equation (l) is linear in the temperature t, we are able to separate the
general problem which includes both internal heat sources and wall heat transfer into
two simpler situations in the following way: (a) A problem where there is an inter-
nal heat generation Q in an insulated tube (q = 0). For this case, the temperature

is designated as tQ. (b) A problem where there is a wall heat transfer q without



BE-154

-5 -
internal heat generation (Q = 0). In this instance we denote the temperature by tq.
Then, from the linearity of the energy equation, the temperature in the combined prob-
lem is simply given by
t = tq + tqg (2)
The governing equations and boundary conditions for tQ and tq may be written

as follows:

ot
u = % g%[;(a + ey) 3;3] + 5%5 (3a)

otgfor = 0 at r

N

ro {(insulated wall)

BtQ/Br =0 at r

[l

0 (symmetry) (3b)

tg =tq,0 &t x=0 (entrance condition)
and

3 ot
w5 - 2 e+ e 5 (s2)

dty/dr = q/k at r = r, (specified heat flux)
Otg/or = 0 at r = O (symmetry) (4p)
tq = tq,0 at x = O (entrance condition)
where tQ,0 and tq,o are chosen so that
to = tq,0 *+ tg,0 (2a)
The two problems as defined by equations (3) and (4) willl be analyzed separately.

We begin by studying the problem of a flow with internal heat sources in an in-
sulated tube, that is, tg- First, consideration is given to the situation of uni-
form heat sources, and a sclution 1s obtained which applies both in the entrance
and fully developed reglons. Then, these results are generalized to the case where
there are arbltrary variations of the heat sources along the length of the tube.
Next, the results for the problem of uniform wall heat transfer with no heat sources,
originally given in reference (5), are reviewed and generalized to apply for arbi-

trary longitudinal variations of heat flux. The linear combination of these
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solutions is then made to yield results for the general case of arbitrary longi-
tudinal variations in both internal heat sources and wall heat flux. Extension of
the analysis to the situation of radially nonuniform heat sources is made in the last
section of the report.

The eddy diffusivity which appears in equations (3a) and (4a) bears a word of
discussion. Current knowledge of the relationship between the eddy diffusivity for
heat, €, and the eddy diffusivity for momentum, €y, is still in a state of uncer-
tainty. However, it appears that for the Prandtl numbers of this study, 0.7<Pr< 100,
the choice of ¢€p = € 1s not unreasonable. Previous application of this assump-
tion has led to excellent heat transfer predictions over this Prandtl number range.

UNIFORM INTERNAL HEAT SOURCES IN AN INSULATED TUBE

For uniform heating conditions, it is well-known that as the flow proceeds far-
ther and farther down the plpe, the heat transfer characteristics approach more and
more closely to a limiting condition. This limit is termed the fully developed heat
transfer situation and will be denoted by the subscript fd. Taking cognizance of
the fully developed condition, we choose to write the temperature distribution tQ
as the following sum

tq = tq,rd + tq (5)
ta is seen to be a difference temperature which plays an important role in the
entrance region and approaches zero as Xx becomes large. We now proceed to solve
separately for tQ,fd and ta.

The fully developed solution. - Since energy conservation must everywhere be

obeyed, it is necessary that tq gy satisfy equation (3a), that is,

ot ot
T e ™I (5)

PCp
where Q 1s now a constant and €y has been replaced by €ne A characteristic of
the fully developed situation for uniform heat sources is that the temperature at

all points in the cross sectlion rises in a linear fashlon along the pipe. Expressed
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in mathematical terms, the condition becomes

ot
——%LEQ = constant = —2 (72)
X pucy,
or alternately
t - %
U0 = o ]+ H() (70)
Qro/k

The radial distribution H(r) must, of course, satisfy the conservation of energy
equation (6). Substituting (7b) into (6) and introducing dimensionless variables,

the governing equation for H is found to be

+
2ut _To a N 1 (8)

where u* and r¥ are the dimensionless counterparts of u and r as given in the

symbol list, and Yy represents a dimensionless diffusivity defined as

@ + €y €

1
vE— T Cm Y

=
v
The boundary condlitions on H are found from equation (3b) to be
aEfart = 0 at r*=0 and r*=r} (sa)
To obtain solutions of equation (8), it is necessary that the variation of ut
and 71 with r*t be specified. The turbulent velocity distribution is given by the

followlng equations (ref. 6).

+
du+ = 1 o 0<yt<a2e (9a)
BT 1 4 (0.124)2 ut [1 e-(0.124)" uw q
W= L1 (:Yi) + 12.8493 26 < yt (ob)*
0.36 26 ’ -

where yT = r¢ - r¥, wnile v is evaluated from (ref. 5)
2
7= Pi + (0.124)% u* +[1 _ o(0.12¢4) u+y+], o< y* < 26 (108)

r =g+ 03657 (1 y¥/ed) -1, vt > e (10p)

*The constant 12.8493, evaluated to higher accuracy for the purpose of this in-
vestigation, differs slightly from that of reference 6.
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The value of y at y+ = 26 1s taken as the average of equations {10a) and (10b).
The minus one term appearing on the right side of equation (lOb) 1s retained for
26 <yt < rg/z and is deleted for larger values of yt.

With these expressions for ut ana Y, we can proceed with the integration of
equation (8) in order to find H. An analytical solution was not possible and a nu-
merical technique (Khtta-Runge method) had to be employed. Solutions were carried
out on an IBM 653 electronic computer for Reynolds numbers of 50,000; 100,000; and
500,000 for Prandtl numbers of 0.7, 1, 10, and 100. The values of H thus obtained
provide, in conjunction with equation (7b), the complete solution for the fully de-
veloped situation. Space considerations preclude tabulation of the solutions here,
but they are available as IBM listings.

A result of practical engineering importance is the wall-to-bulk temperature 4if-
ference for the fully developed situation. First, the bulk temperature is introduced

by 1ts definition
2
Q_, _ %o a(x/a)

t -3 = = X 11
Qsb Q0 puc,, k  RePr (11)

Then, substituting into equation (7b) and evaluating H at the tube wall (rt = rg)

we find

(tq,w - tq,v)ra
2
wwolk

= H(x}) (12)

Using the numerical res.lts for H(rg), the dimensionless wall-to-bulk temperature
difference has been plotted on figure 2 as a function of the Reynolds and Prandtl
numbers .

We will make further use of the fully developed solution in later sections.

The thermal entrance region. - According to equation (5), the temperature dis-

trivution in the thermal entrance reglon is found by adding the difference tempera-
ture tg to the fully developed temperature tQ,fd‘ Having determined tQ,fd’ we

now turn our attention to ts.
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To find the governing equation for té, we introduce equation (5) into the con-
servation of energy principle (Sa). Then, taking account of the fact that tQ,fd
satisfies (6), it follows that té must obey

*
3;_ O _rb ._a_lir'*'y ?t_a] (13)
axt  rtort ort

where agaln dimensionless variables have been used. It 1s interesting to observe
that the heat source term does not appear in equation (13).

The boundary conditions on tz may be derived from equations (3b), in con-

junction with (5), giving

Bt§/8r+ =0 at rt=0 and rt=1} (142)
and
*
tQ = tQ’O - tQ’fd.
or at x=0 (14p)
*
" - H(r)
Qrg/k

where we have also used equation (7b) in finding the last expression.

We seek a solution for ta in the form of a product

£
Qrg/k

= Dp(rt) ¥(x*) (1s)

where ¥ and @, respectively, depend on x% and r¥ alone. By substituting into

the differential equation (13), we find that

¥ = o-48%xt [Re (18)
2 L+
g o+ @), (227 o o
dr+<rrdr>+<Re r"'u =0 (17a)
o
2p2
where - Re is the separation constant arising from the product solution. From

(14a), the boundary conditions on equation (17a) are

dpfdrt = 0 at r*=0 and r*=rf (170)
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Equations (l7a) and (l?b) comprise an elgenvalue problem of the Sturm-Liouville
type. Solutions are possible only for a discrete, though infinite, set of B

values. Hence, the solution for t* can be written as

* [¢ ]
t e
g = E Do, (rH)e 4B, /Re (152)
Q,I'O/k n=0

where B, are the eigenvalues and ¢, are the corresponding eigenfunctions of equa-
tions (17a) and (17b). Since the values of r} and v in equation (17a) depend on
the Reynolds and Prandtl numbers, there will be a different set of elgenvalues asso-
clated with each choice of these paremeters. Utilizing numerical integration, the
first six eigenvalues and eigenfunctions have been found for the same Reynolds and
Prandtl numbers previously mentioned. The eigenvalues are listed in table I, while
the corresponding elgenfunctions are available as IBM tabulations.

The coefficlents D, of equation (15a) are still to be determined. Applying
the boundary condition at the tube entrance as given by equation (14b), we have

55 Do, = -H(r?) (18=2)

n=0

From this, it follows immediately from the properties of the Sturm-Liouville system

that +
ro
{ [-E(x*)] rHut ¢, art
D, = T (18p)
/‘ O Lyt q)rzl art

6]

It is seen that the computation of the D, involves an integration of the fully
developed temperature distribution. With the ﬁn, P and D, determined, the dif-
ference temperature ta is known from equation (lSa), and we may now proceed with

the complete solution of the problem.

The complete temperature solution. - Combining the results of the preceeding

sections in accordance with equation (5), we are able to write an expression for the



E-154

CP-2 back

- 11 -
temperature distribution which applies both in the entrance and fully developed

regions, that is, o 5

t t 461’1 X

Q~ "Q,0 4 x + H(I‘+) + D 4+\. Re d

= 0P (rH)e (19)
Qrg/k RePr 4 o~

Of particular practical interest is the difference between the wall and bulk

temperatures at all stations along the pipe. Evaluating equation (19) at the wall

(rt = r}) and substituting the bulk temperature from equation (11) yields

\ 465 x
tg v - t —— =
—M—Z—% = H(rg) + Dn(pn(rg)e Re 4 (20)
Qrg/k

n=0
A convenient rephrasing of this result may be carried out by introducing the fully

developed wall-to-bulk temperature difference from (12), giving

o

2
JEPn x
Epe Re d
tQ,w "tt%b =1+ 80 (20a)
(tq,w = Tq,n)sa B(r})

where the product Dy@,(rd) has been abbreviated by E,. Numerical values of E,
have been listed in table II as a function of the Reynolds and Prandtl numbers, while
H(rg) may be read directly as the ordinate of figure Z. Using these numerical data,
the ratio of temperature differences given by (20a) has been plotted on figures 3(a)
and S(b) as a function of distance along the tube for parametric values of the Reyn-
0lds and Prandtl numbers”. The information given on these plots, used in conjunction
with figure 2, permits rapid evaluation of the wall-to-bulk temperature difference at
various stations along the tube.

We can define a thermal entrance length as the heated length required for
(tQ,w - tQ,b) to approach to within 5 percent of the fully developed value. A dashed

line has been drawn on figures 3({a) and 3(b) to facilitate finding the entrance length.

*The curves do not extend all the way to x = 0 Dbecause the series has been
truncated.
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S0, for example, for Re = 50,000 and Pr = 100, the entrance length is 15 diameters;
while for Re = 50,000 and Pr = 0.7, the entrance length is 21 diasmeters.. A very
significant finding is that, especially for high Prandtl numbers, these entrance
lengths are substantially greater than those encountered in turbulent pipe flow with
uniform wall heat transfer or uniform wall temperature. These differences in en-
trance length will be emphasized in a later section when the results for uniform wall
heat flux are given.
ARBITRARY LONGITUDINAL HEAT SOURCE VARIATIONS IN AN INSULATED TUBE

We now proceed to generallze these results to apply for arbitrary variations of
the internal heat generation along the tube. For the purposes of analysis, suppose
that Q(x) can be represented as in figure 4. Envision for the moment an elementary
heating process in which there is no internal heat generation up to a position §;
then, beyond §, there occurs a uniform internal heating of magnitude dQ. The tem-

perature response to such a process can be found by applying equation (19).

d Re d

tg - t -
A 9o aq + H(rt) + Do, © s x> X (21)

rg/k RePr —
This elementary heating process can be considered as a differential step in the heat
source variation pictured on figure 4. By integrating the separate effects of these
elementary steps, we are able to find the temperature distribution at any position
corresponding to a prescribed upstream variation of Q(x). The integral of the right

side can be rephrased into a more convenient form by integrating by parts. The re-

sult of this operation is

2 —
& & X = X 4Bn X-X)
Q ~ *Q,0 2 =i _ 2 2 " Re =
r./k =~ = Ferr / Qlx)dx - 57 E ;Dn(pan / e e 4 & (22)
0 n=0 0
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Now, turning to the wall-to-bulk temperature difference, we evaluate equation

(22) at rt = rg and introduce the bulk temperature by its definition

tg,b = tg,o * Eﬁ-‘—)/x Q(x)dax (23)

RePr 0

finally giving,

pA —
bt % _4Bn (x-x)
t -t = - 5o/ E :E gz Qx) e Re ¢ ax (24)
QW Q,b Re ntn 0

n=0

Numerical values of E, and Bﬁ are given in tables I and II, so that the integra-
tlon can be carried out (either analytically or numerically) for any prescribed vari-
ation of the internal heat generation Q(x).

WALL HEAT TRANSFER WITHOUT INTERNAY, HEAT GENERATION

Uniform wall heat flux. - An analysis of turbulent pipe flow with uniform wall

heat flux has been given in reference 5 and only the results need be reviewed here.
First, for the fully developed heat transfer condition, the wall-to-bulk temper-
ature difference corresponding to the uniform heating at the wall has been plotted
on figure 5 for the same Reynolds and Prandtl number ranges as heretofore con-
sidered®. It may be noted that the ordinate is proportional to the reciprocal of

the fully developed Nusselt number, which has its usual definition

hegd
Nupg = ——— heq = 4 (25)
fa k ’ td (tq,w - tq,bjfd

while the bulk temperature for uniform heat flux is given by

9o 8(x/4)

tq,b - tq,0 = X  RePr

~~
0o
[op]

~

Unpublished experimental data of Presler and Loeffler (7) also appear on figure 5 and
show excellent agreement with the theory. The fluid properties appearing in the ex-

perimental correlation were evaluated at the film temperature.

*The results of reference 5 have been extended to cover the Pr =1 case.
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Results for the wall-to-bulk temperature difference which apply all along the
tube are given in the form of the ratio

(t(bw - t‘l;b)/(t(bw - t‘l:b)fd

which is plotted on figures 6(a) and 6(b) as a function of x/d for parametric val-
ues of the Reynolds and Prandtl numbers. The use of figure 6, in conjunction with
figure 5, permits rapid computation of those temperature results of greatest practi-

cal interest. The ordinate of figure 6 can also be recognized as the ratio
Nufd/Nu

where Nu 1s the local Nusselt number defined by equation (25) with subscripts fad
deleted.

For this situation of uniform wall heat flux, a thermal entrance reglon can be
defined as the length required for (tq,w - tq,b) to approach within 5 percent of its
fully developed value, or alternately, as the length required for the Nusselt number
to approach within 5 percent of its fully developed value. A dashed line has been
drawn on figure 6 to aid in determining the thermal entrance lengths. Comparison of
figure 6 with figure 3, especlally for the high Prandtl numbers, verifies our pre-
vious statement about the considerably greater entrance lengths assoclated with the
case of internal heat generation. Further, it is interesting to observe that the
Reynolds number appes~:= to play a much greater role in determining the entrance
lengths for the heat .ouneration case.

While the important results of reference 5 have been graphed on figures 5 and 6,

it will also be useful to give thelr analytical representation as follows

485 x
by -t el
9~ a0 8A) L gty 4+ fome T D (26)

RePr
qro /k © n=0
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where Bg and F, are listed in tables I* and ITT, respectively, and G(rg) is read
directly from the ordinate of figure 5.

Arbitrary wall heat flux. - Following a procedure identical to that outlined

previously, the results for the uniform heat flux case as expressed by equation (26)
may be generalized to apply to arbitrary longitudinal wvariations q(x). First con-
sidering an elementary heating process and then integrating the effects of many such

processes, we find that
) X 2 _
4Bn (x-x)
2 2 =y . Re d -
tg,w - bg,b = - TR F B, a(x) e dx (27)
n=0 0

where
b'd

4 _ -
tq,b = tq,0 * T Rebr / qx)dx (28)
0

Equation (27) gives the wall temperature at any position for a prescribed upstream
variation in wall heat flux. Inasmuch as the constants Bg and Fp are avallable
in tables I and III, the integration can be carried out as soon as the variation of
g is given.
COMBINED INTERNAL SOURCES AND WALL HEAT TRANSFER

We can now proceed to write the solution for the situation where internal heat
generation and wall heat transfer occur simultaneously. According to equation (2),
results for this combined problem are found by adding the contributions due to each
of the separate problems.

The most important result of practical interest is the wall temperature wvariation
corresponding to given heating conditions. To compute this, we apply equation (2) to

the wall and bulk temperatures

W tQ,W + tq’w tb = tQ,b + tq,b (29)

*The Bg values listed here are slightly refined compared with those of ref. 5.
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Then, subtracting the second of these from the first gives
tw - tp = (tQ,w = tQ,b) + (tq,w - tq,b) (303-)
Consideration is first given to the situation where both the internal heating
and the wall heat flux are uniform along the length. For these circumstances, equa-

tion (302) can be recast into a form more convenient for rapid calculations as

follows:
£, -ty = “Quw Qs (tg o - to w)eg + “ape ” Taph (tq,w - tq,b)
W b (tQ,W - tQ)b)fd Q,’W Q,b fa (tq,W - tq’b)fd q,w q}b f4
(30b)
where the subscript fd dJdenotes the fully developed situation. Numerical values of

the first square bracket may be read directly from figures 3(a) and 3(b); while the
second square bracket is read directly from figures 6(a) and 6(b). The fully devel-
oped temperature differences (tQ,w - tQ,b)fd and (tq,w - tq,b)fd are found from
figures 2 and 5, respectively. The bulk temperature for the situation of combined

uniform heat generation and wall heating is computed from

2
Qr 2qr
tb = 't',o + 4}({:%3)[ kO + kO] (31)

So, with this information, equation (30b) may be easily evaluated to give the wall
temperature at various statlions along the tube.

Now, we turn to the situation where the internal heating and wall heat transfer
vary in an arbitrary way along the length. Equation (30a) is then applied, and the

temperature differences (tQ,w - tQ,b) and (tQ;W - tq,b) are respectively evaluated

g-
D
<%
[
=}

from equations {24) and (27). The numerical values of Bi, E,, end F, ne
the computations are listed in tables I, II, and III, while the bulk temperature cor-

responding to the longitudinally nonuniform heating is glven by

tp = tg + E_T];aT’r_[L,{ a(x) ax + d{ Q(E)di] (32)
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Once the longitudinal variations are prescribed, equation (30a) may then be used to
compute the wall temperature at various positions.
RADIAL VARTATIONS OF THE INTERNAL HEAT GENERATION

In this paper, numerical results have been provided for the case of internal
heat sources which are uniform across the tube cross section. However, the results
can be extended to heat sources which vary in the radial direction. In this instance,
the fully developed temperature distribution is given by

tq,ra ~ %q,0 4 x

= =
Ty RePr a4

l—i f Q(r)r ar

0]

+ M(r) (33)

which is of a form similar to equation (7b). The function M(r) must be found by in-

tegrating the equation

+ + rt +
2u” _To d |:1‘+Y aM ] + .0 Q(r™) (34)
RePr r gyt art 2Pr r;
{ Q(r)rtart

With Q(r) specified, this can be solved numerically in the same manner and with the
same boundary conditions as equation (8).

The eigenvalues and eigenfunctions arising in the solution of the difference
temperature t; remaln unchanged, but the D, in equation (le) now have to be
evaluated using -M(r¥) in place of -H(r*). Hence, for the difference temperature

* :
tQ, we can write

¥ 4B§x+
L‘Q’ = ! + - Re
T D/o (r*) e (35)
2 n=0
T ./” Qr dr
0
where rg
S [—M(r"’)] rtuty  art
0
D! = " (36)
To
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"iese expressions can be evaluated for any prescribed radial heat source vari-

ation, and the extension to longitudinal variations proceeds in the same manner as

described previously for uniform heat sources.

1.

2.
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TABLE I. - LISTING OF EIGENVALUES, Bg

(a) Re = 50,000.

CP-3 back

o 5 2 2 2 o
Pr 1By | B1 P5 P3 Pz P5
0.7 0 1387 | 3730 | 7040 | 11,330 | 16,600
1.0 0 1380 | 3705 | 6981 | 11,220 | 16.410

10.0 | 0 1366 | 3651 | 6850 | 10,960 | 15,950

100.0 | 0 1364 | 3645 | 6835 |10,930 | 15.880

(b) Re = 100,000.

Pr | pS | B B BZ BZ BE
0.7]0 2545 | 6822 | 12,850 | 20,630 | 30,190
1.0 0 2538 | 6796 | 12,790 | 20,520 | 30,000
10.0 | 0 2524 | 6742 (12,660 | 20,270 | 29,560
100.0 | O 2522 6737 | 12,640 | 20,240 | 29,510

(¢) Re = 500,000.
2 2 2 2

Pr | B§ B B% Pg Bz 5%
0.7/ 0 |10,680 |28,520 | 53,560 | 85,810 | 125,300
1.0 0 10,670 [28,490 | 53,490 |85,690 | 125,100
10.0 | 0 |10,660 |28,440 | 53,360 |85,440 | 124,700
100.0 | 0 |10,660 |28,430 | 53,350 |85,410 | 124,600




TABLE II. - VALUES OF THE COEFFICIENTS Ep

(a) Re = 50,000.

Pr -El —E2 -E3 -Eg -Eg
0.7 0.1753x1079 | 0.5039x10™% | 0.2405x107% | 0.1422x10~% | 0.9719x10-2
1.0 .1242x1073 | ,3616x10% | .1752x10-% | .1055x10-%4 | .7362x10-5
10.0 .1293x107% | .3973x107° | .2071x107° | .1379x10-° | .1093x10-5
100.0 .1328x107° | ,4263x10°8 | .2377x1076 | .1734x10-6 | .1576x10-6
(b) Re = 100,000.
Pr -El —E2 _ES —E4 —E5
0.7 0.8775x10™% | 0.2454x10™% |0.1128x10™% | 0.6421x107° | 0.4180x10~2>
1.0 .6186x107% | ,1742x10-% | .8076x10-° | .4640x10-5 | .3058x10-5
10.0 .6323x107° | ,1831x10-° | .8799x10°6 | .5304x1076 | .3708x10-6
100.0 .6388x1076 | ,1892x10°6 | .9353x10-7 | .5879x10-7 | .4341x10-7
(e) Re = 500,000.
Pr -E, -E, -E -E, -Eg
0.7] 0 |0.1781x10™% |0.4789x107° [0.2114x10-5 | 0.1158x10-5 | 0.7194x10-6
1.0] © .1249x107% | .3366x107° | .1489x10-° | .8174x10-6 | .5094x10-6
10.0| 0 .1256x107° | .3405x10-6 | .1519x1076 | .8421x10-7 | .5310x10-7
100.0 | © .1259x10°% | .3a28x1077 | .1537x1077 | .8581x10~8 | .s459%x10°8
TABLE III. - VALUES OF THE COEFFICIENTS Fp
(a) Re = 50,000.
Pr —Fl —F2 -Fs —F4 —F5
0.7| 0 | 0.3507x1072 {0.1848%102 | 0.1278x10"2 | 0.9842x10-3 | 0.8209x10-3
1.0 o .2505x1072 | ,1342x10-2 | ,9486x10~3 | .7480x10~3 | .6409x10-3
10.0| o© .2653x1073 | ,1546x10-3 | ,1213x10-3| .1106x10-3 | .1109x10-3
| 100.0| o© .2748%107% | ,1742x107% | .1513x10-%| .1614x10-% | .1962x10-%
(b) Re = 100,000.
Pr F —Fl —F2 —F3 —F4 -F5
0.7| 0 | 0.1947x1072 |0.1034%x202 | 0.7110x10-3| 0.5407x10~3 | 0,4400x10-3
1.0 o0 .1375x1072 | .7375x107° | .5136x1070 | .3963x10°0 | .3277x10°3
10.0} © .1426x1073 | .7971x107% | .5887x10-%| .4881x10-% | .4403x10-%
100.0] © .1455x107% | .8475x107° | ,6375x10"°| .66809x10-° | .5836x10-5
(¢) Re = 500,000.
Pr FO -Fl —F2 —F3 —F4 —F5
0.71 0 | 0.4786x10"3 |0.2590x10-3 | 0.1796x10~3 | 0.1374x10~3 | 0.1114x10-3
1.0] o .3348x1073 | ,1818x10-3 | .1265x10-3| .9715x10-% | .7893x10-%
10.0{ © .3389x10"4 | .1860x10~% | .1312x1074| .1024x10-%4 | .8479x10-°
100,0| 0O .3401x107° | ,1877x107° | .1333x10-°| .1048x10-5 | .8763x10-6
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Fig. 4. - Representation of an arbi-
trary longltudinal internal heat
source distribution.
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Flg. 5. - Fully developed wall-to-bulk temperature difference
for uniform wall heat flux and no internal heat source.
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